神华包头180万吨煤基甲醇制60万吨烯烃项目。
中国科学院大连化学物理研究所供图
刘中民(左一)和团队成员交流。
中国科学院大连化学物理研究所供图
乙烯、丙烯等烯烃是重要的有机化工原料,在工业、农业、医药、环保等领域有着广泛的应用。塑料、合成橡胶、纤维、医药品原料、农药、涂料等,大部分品种的重要原料都是烯烃。
在化学工业领域,主流方法一直是通过石油加工生产乙烯、丙烯等烯烃原料。
“富煤贫油少气的基本国情,决定了我们不能走完全依赖石油制烯烃的道路。”中国工程院院士、中国科学院大连化学物理研究所所长刘中民说。
从上世纪80年代起,中国科学院大连化学物理研究所(以下简称大连化物所)的科研人员开始探索研究煤制烯烃技术。此后,经过几代科研人员近40年的接续攻关,联合工程公司终于成功开发了具有自主知识产权的甲醇制烯烃专利工艺技术(DMTO)成套工业化技术,开辟了非石油资源生产烯烃的新路线,实现了世界上煤制烯烃工业化“零”的突破。
承担重任,挑战世界级课题
20世纪70年代,由于全球石油危机导致石油价格大幅攀升,人们对烯烃原料来源产生担忧。
科学家想到一种方法:首先以煤炭或天然气为原料合成甲醇,再用甲醇制取烯烃。一些国家相继启动以煤代油的科技攻关计划。立足富煤贫油少气的国情,中国的科研人员们也行动起来。1981年,甲醇制取烯烃被列为中国科学院的重点课题,大连化物所承担了这一重任。
“那时,煤合成甲醇已经有了成熟的工业技术,而甲醇制烯烃则是待攻克的关键核心技术,也是世界范围内极具挑战性的课题。”刘中民说。
“以煤代油”关系到我国经济长期稳定发展和能源安全,再难也得上。大连化物所迅速成立了以陈国权研究员和梁娟研究员为正副组长的研究小组。1983年,19岁的刘中民进入大连化物所攻读硕士研究生,随即加入到团队当中。
一切从实验室起步。
“首先要闯的一道难关是研制催化剂,有了催化剂才能将甲醇转化为烯烃。”刘中民说。
当时,有ZSM—5分子筛催化剂和SAPO—34分子筛催化剂两条技术路线。前者已有工业应用的例子,风险相对较小,而SAPO—34分子筛催化剂的工业应用潜力,还需要进一步研究。权衡考虑之后,研究团队最终决定“两条腿走路”。
经过几年夜以继日的奋战,团队在国内首先合成了ZSM—5型沸石分子筛,向实现甲醇制烯烃的战略目标迈出了第一步。之后,研究人员乘胜前进,先后完成了3吨/年规模沸石放大合成、4—5吨/年规模的催化剂放大设备,以及日处理量1吨甲醇规模的甲醇制烯烃固定床反应系统和全部外围设备,并在1993年完成了中试。
随着研究的深入,科研人员发现,SAPO—34分子筛催化剂可大幅提高烯烃产率,工业应用前景更好。1995年,团队采用自己首创的合成气经由二甲醚制烯烃新工艺方法,完成百吨级中试试验。试验结果很好,项目被中国科学院授予中国科学院科技进步奖特等奖。
原本以为项目就此会顺利推进,没想到“突变”而至:国际油价大幅下跌,一度跌至不足10美元/桶。
“这样一来,与石油制烯烃相比,煤炭制烯烃的成本太高,因此,企业对煤炭替代石油生产烯烃项目的积极性并不高。”刘中民说。在一段时期内,研究因资金短缺陷入僵局。
工业应用,实现“零”的突破
化工行业不同于其他领域,一个新工艺过程绕不开逐级放大,从实验室到中试再到工业示范,最后才能产业化。这个过程需要大量的资金。
怎么办?
刘中民不想放弃,他坚信对于国家,这项研究的意义重大而深远。于是,在推动技术研发的同时,他开始四处寻找投资,盼望与企业联合开发。
“当时压力很大。”刘中民坦言,“如何让企业理解我们的技术前景和潜在优势,说服他们支持建设万吨级工业性试验装置,在放大中验证和完善技术,对我们这些专于科研的人来说,着实是个挑战。”